Blog
-
(2023-04-15) Vicinal distributions as a statistical view on data augmentation
An excerpt of my upcoming PhD thesis. I introduce data augmentation through the lens of vicinal distributions, and introduce mixup augmentation as a multi-sample generalisation of it.
-
(2023-03-20) Derivations for score-based generative models
I write some math detailing the SBGM loss and how it can be simplified. I also demystify the official SBGM repository's implementation of the score matching loss.
-
(2023-01-27) Techniques for label conditioning in Gaussian denoising diffusion models
I rigorously compare and discuss three recent conditioning techniques for Gaussian DDPMs from a theoretical point of view -- classifier-based guidance, classifier-free guidance, and the conditional ELBO.
-
(2022-09-24) Learning the conditional prior over classes for image diffusion
My implementation of a conditional diffusion model for speech enhancement, demonstrated for images on the MNIST dataset. Unlike other conditional formulations which use classifier-style guidance, this proposes a conditional variant of the ELBO.
- (2022-08-02) The obsession with SOTA needs to stop
- (2022-07-24) Towards a more sane Mac OS user experience, and I am late to the party
-
(2022-07-11) My notes on discrete denoising diffusion models (D3PMs)
My notes on D3PMs. It includes derivations for the two main equations presented in their work.
- (2021-08-17) A somewhat mathematical introduction to Gaussian and Laplace autoencoders
- (2021-06-28) Training GANs the right way