PhD student, Quebec Artficial Intelligence Institute.
Research interests: self-supervised learning, generative models, few-shot learning, inverse graphics
Contact: christopher.beckham(at)mila(dot)quebec
I am a PhD candidate at MILA and Polytechnique Montreal, advised by Prof. Christopher Pal. Previously, I completed my BCMS(Hons) at The University of Waikato, under the supervision of Prof. Eibe Frank. My research interests are in model-based optimisation, energy-based models, generative models, and adversarial learning.
I also maintain a [blog](/blog), where I mostly write about things pertaining to my research interests. I consider some of these articles to be under the umbrella of 'alterative' publishing, things that are less appreciated or cared for in 'mainstream' academia such as tutorials, proof of concept work, or reproducing existing papers. (It is also nice to be able to write in prose and not have to be overly formal.)
arXiv Lim, J. H., Kovachki, N. B., Baptista, R., Beckham, C., Azizzadenesheli, K., Kossaifi, J., ... & Anandkumar, A. (2023). Score-based diffusion models in function space. arXiv preprint arXiv:2302.07400.
arXiv
Beckham, C., Piche, A., Vazquez, D., & Pal, C. (2022). Towards good validation metrics for generative models in offline model-based optimisation. arXiv preprint arXiv:2211.10747.
NeurIPS 2019 **Beckham, C.**, Honari, S., Verma, V., Lamb, A. M., Ghadiri, F., Hjelm, R. D., Bengio, Y., & Pal, C. (2019). _On adversarial mixup resynthesis._ In Advances in Neural Information Processing Systems (pp. 4346-4357).
[`[`paper`]`](https://papers.nips.cc/paper/8686-on-adversarial-mixup-resynthesis) [`[`code`]`](https://github.com/christopher-beckham/amr) [`[`video`]`](https://www.youtube.com/watch?v=ezbC3_VZeNY)
ICML 2019 Verma, V., Lamb, A., **Beckham, C.**, Najafi, A., Mitliagkas, I., Lopez-Paz, D., & Bengio, Y. (2019, May). _Manifold mixup: Better representations by interpolating hidden states._ In International Conference on Machine Learning (pp. 6438-6447).
[`[`paper`]`](http://proceedings.mlr.press/v97/verma19a.html) [`[`code`]`](https://github.com/vikasverma1077/manifold_mixup)
NeurIPS 2018 Moniz, J. R. A. †, Beckham, C. †, Rajotte, S., Honari, S., & Pal, C. (2018). _Unsupervised depth estimation, 3D face rotation and replacement._ In Advances in Neural Information Processing Systems (pp. 9736-9746). († = equal authorship)
[`[`paper`]`](https://papers.nips.cc/paper/8181-unsupervised-depth-estimation-3d-face-rotation-and-replacement) [`[`code`]`](https://github.com/joelmoniz/DepthNets) [`[`video`]`](https://www.youtube.com/watch?v=h_brJWd7nNg)
NeurIPS 2017 Racah, E., **Beckham, C.**, Maharaj, T., Kahou, S. E., Prabhat, M., & Pal, C. (2017). _ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events._ In Advances in Neural Information Processing Systems (pp. 3402-3413). [`[`paper`]`](https://papers.nips.cc/paper/6932-extremeweather-a-large-scale-climate-dataset-for-semi-supervised-detection-localization-and-understanding-of-extreme-weather-events) [`[`dataset`]`](https://extremeweatherdataset.github.io/)
ICML 2017 **Beckham, C.**, & Pal, C. (2017, July). _Unimodal probability distributions for deep ordinal classification._ In International Conference on Machine Learning (pp. 411-419). [`[`paper`]`](http://proceedings.mlr.press/v70/beckham17a.html)
PatRec 2023 **Beckham, C.**, Weiss, M., Golemo, F., Honari, S., Nowrouzezahrai, D., & Pal, C. (2023). Visual question answering from another perspective: CLEVR Mental Rotation Tests. Pattern Recognition, 136, 109209.
MIA 2022 Vorontsov, E., Molchanov, P., Gazda, M., **Beckham, C.**, Kautz, J., & Kadoury, S. (2022). Towards annotation-efficient segmentation via image-to-image translation. Medical Image Analysis, 82, 102624.
KBS 2019 Lang, S., Bravo-Marquez, F., Beckham, C., Hall, M., & Frank, E. (2019). Wekadeeplearning4j: A deep learning package for WEKA based on DeepLearning4j. Knowledge-Based Systems, 178, 48-50. [`[`paper`]`](https://felipebravom.com/publications/WDL4J_KBS2019.pdf) [`[`code`]`](https://github.com/Waikato/wekaDeeplearning4j/)
ML4H @ NeurIPS 2016 Beckham, C., & Pal, C. (2016). _A simple squared-error reformulation for ordinal classification._ arXiv preprint arXiv:1612.00775.